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Abstract: Tetra-O-benzyIgZucose I and trichZoroacetonitriZe afford in a base cataZyzed, fast, 

and reversible reaction the /3-O-gZycosyl imidate g-13, uhich is transformed slowly _ 

into the a-isomer 3-a. Both results, = the reactivity differences of 2a,/3 and the 

stability differences of -a/n are due to lone pair rep&ions implicated in the _ 

anomeric effect. 

The excellent a- and B-diastereoselectivities obtained in the l-O-alkylation of l-O-metalated 

glycopyranoses and glycofuranoses were explained by intermolecular versus intramolecular com- 

plexation of the metal cation, by different steric requirements, and by anomeric effect derived 

differences in the nucleophilicity of the anomeric oxide oxygen atom 2) . However, these alkyla- 

tion reactions are irreversible reactions therefore the question of kinetic versus thermody- 

namic product formation was not clarified and the contribution of stereoelectronic effects to 

reactivity differences could not be clearly separated. 

In the synthesis of complex glycosides and oligosaccharides the 0-glycosyl trichloroacetimidate 

procedure 3y4) has proven to be an efficient alternative to the Koenigs-Knorr procedure and its 

valuable modifications 5). The base catalyzed direct 0-glycosyl trichloroacetimidate formation 

is now demonstrated to be a reversible reaction. With tetra-O-benzylglucose 1 the increased 

nucleophilicity of the B-l-oxide oxygen of z-13 and the increased stability of the a-imidate 

3-a are important (Scheme 1). The differences in reactivity of g-a/B and in stability of ;-a/B, 

respectively, enable a separation of kinetic and thermodynamic stereoelectronic effects and in 

addition a highly diastereoselective synthesis of 2-a and z-8, thus enhancing the versatility 

of the trichloroacetimidate procedure. 

Reaction of 2 (i-a : I-B i= 3:2 6)) with trichloroacetonitrile and excess sodium hydride (for 

experimental details see ref. 4a) led via 2-a in a fast and quantitative reaction (96 % iso- 

lated yield) to j-a 4a). Careful investigation of this reaction displayed, however, that ini- 

tially 2-D is formed in appreciable amount. However, 3-R anomerizes rapidly under the reaction 

conditions to 2-a (Table 1). The expected difference in reactivity between z-a and g-R could be 
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Scheme 1: R=Benzyl, M=Na,K 
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Table 1. Base Catalyzed Reaction of 1 with Trichloroacetonitrile a. 

Base Reaction Time Retained I Anomer Ratio of 2 b 
[%I 

Total Yield of 2 b 
[%I 2-a : &-8 

NaH C 0 100 0 
1 min 15 85 35 : 65 
3 min 5 95 45 : 55 

5 min 2 98 50 : 50 

2.5 h 2 96 a 

K2C03 d 0 100 0 

5h 5 95 1 : 4 
22 h 3 97 1:2 

30 h 3 97 2 :3 

100 h e 10 80 1:l 

a 1 g (1.85 mmol) 1 and 1 ml CC13-CN are dissolved in 10 ml CH2C12 at room temperature. 

b Isolated yields; the anomer ratios were determined by lH-NMR. 

' 30 mg NaH; d 1 g dry K2CO3; e partial decomposition was observed, which led to 10 % by- 

product formation. 
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demonstrated by using dry potassium carbonate as base catalyst, which catalyzed a fast 3-8 

formation, however, only a slow 2-B to 2-a anomerisation (Table 1). Therefore after 5 hours 

a 79 % yield of 2-D could be easily isolated as pure material [IH-NMR (CDC13, internal TMS): 

6 = 8.76 (s, lH, NH); 5.88 (d, lH, 1-H); [algy8 = +22' (c = 1, CHC13)l. The base catalyzed Q-B 

to 2-a anomerisation was demonstrated starting from pure 2-B (Table 2). With sodium hydride as 

base 2-B is cleaved to Z-R, E-8 anomerizes to z-a, and 2-a reacts with trichloroacetonitrile - 

due to the thermodynamic anomeric effect - to the thermodynamically favored j-a with the 

electron withdrawing 1-O-substituent in the axial a-position. The large amount of i present 

after 15 minutes (Table 2) is qualitative proof of the slow 3-a formation, which is less evi- 

dent, when excess trichloroacetonitrile is used in preparative scale reactions. 

Table 2. Anomerisation of 2-B to 2-a a 

Reaction time 
[mini 

Retained $3 Obtained Anomer Ratio 
[%I A [%I 3-a [%I 2-a : 2-8 

0 100 0 0 I3 

15 45 50 5 1 :9 

60 5 10 85 17 : 1 

a 0.13 g (1.9 mmol) 2-R was dissolved in 10 ml CH2C12 

temperature. 

and 10 mg NaH were added at room 

Because deprotonation of I-a/B leads to a 1:l mixture of g-a/B 6), the kinetically preferred 

2-D formation must be due to enhanced nucleophilicity of the anomeric oxide oxygen in 2-R: 

This assumption is supported by unfavorable dipole/dipole-interaction in the l3-anomer (Z-B), 

which leads to free orbital repulsion, this way increasing the accessibility of the free 

electrons to electrophiles 2y7y8). A similar increase in reactivity is not expected for the 

a-anomer (2-A). Thus the anomeric stereoelectronic effect is not only a thermodynamic but 

also a kinetic effect 2y7). 
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